katharinasteuer - Kernfusion
   
  Home
  Erdkunde
  Physik
  => Aufbau der Materien
  => Radioaktivität
  => Kernfusion
  => Die Kernspaltung
  => Kernreaktor
  Wolkenbildung
  Kräfte
  Hausaufgaben
  Beruf
  informatik
  Indien

Kernfusion

aus Wikipedia, der freien Enzyklopädie

Wechseln zu: Navigation, Suche
Beispiel für eine Fusionsreaktion: Deuterium und Tritium verschmelzen zu einem Heliumkern unter Freisetzung eines Neutrons. Diese Reaktion wird als Quelle für schnelle Neutronen genutzt; die Energie beider Reaktionsprodukte kann zur Energiegewinnung in einem Kernfusionsreaktor dienen. Diese Fusionsreaktion findet außerdem in Wasserstoffbomben statt.
Beispiel für eine Fusionsreaktion:
Deuterium und Tritium verschmelzen zu einem Heliumkern unter Freisetzung eines Neutrons.
Diese Reaktion wird als Quelle für schnelle Neutronen genutzt; die Energie beider Reaktionsprodukte kann zur Energiegewinnung in einem
Kernfusionsreaktor dienen. Diese Fusionsreaktion findet außerdem in Wasserstoffbomben statt.

Kernfusion bezeichnet eine Kernreaktion, bei der zwei Atomkerne zu einem neuen Kern „verschmelzen“.

Grundsätzlich kann diese Reaktion exotherm (energieliefernd) oder endotherm (energieverbrauchend) sein; nennenswert große Wirkungsquerschnitte (Wahrscheinlichkeit, dass die zusammenstoßenden Kerne miteinander reagieren) gibt es nur bei exothermen Fusionsreaktionen oder bei endothermen Reaktionen, wenn beide Kerne mit ausreichend Energie aufeinanderprallen. Exotherme Fusionsreaktionen können in Form einer energetischen Kettenreaktion ablaufen. Diese sind wesentlicher Gegenstand der Forschung und Entwicklung zur Energiegewinnung.

Bei der Kernfusion muss zunächst die Coulombbarriere (elektrische Abstoßungskraft) zwischen den positiv geladenen Kernen überwunden werden. Der Tunneleffekt macht diesen Vorgang wahrscheinlicher. Beträgt der Abstand dann nur noch 10-15 m, bindet die starke Wechselwirkung die Kerne aneinander.

Energiebilanz

Ist die Masse der bei der Fusion entstandenen Kerne/Teilchen geringer als die Summe der Masse der Ausgangskerne, wird die Massendifferenz (der sogenannte Massendefekt) nach der Einsteinschen Masse-Energie-Äquivalenzformel E=m·c2 in Form von Energie frei (als kinetische Energie der Reaktionsprodukte und als Strahlungsenergie). Solche exothermen Fusionsreaktionen sind nur im Gebiet der leichten Kerne möglich, da die Bindungsenergie pro Nukleon mit steigender Massenzahl bis hin zum Element Eisen (58Fe) zunimmt. Ein starkes lokales Maximum hat sie beim Nuklid Helium-4. Die für die Fusionsenergiegewinnung günstigsten Reaktionen (siehe Kernfusionsreaktor) erzeugen daher He-4. Im Bild oben ist die am leichtesten einzuleitende dieser Reaktionen, D + T → 4He + n, dargestellt.

Die Bildung von 1 kg Helium mittels dieser Reaktion liefert eine Energie von rund 115 Millionen Kilowattstunden (115 Gigawattstunden) oder 14,126 Mio SKE. Dies würde bei idealer, vollständiger Umwandlung den gesamten deutschen Strombedarf von 2 Stunden decken.

 

Kernfusion in Gestirnen 

Kernfusionen sind die Energiequelle der Sterne, also auch unserer Sonne. In den meisten Sternen fusioniert dabei Wasserstoff über mehrere Zwischenschritte zu Helium („Wasserstoffbrennen“); bei dem in diesen Sternen herrschenden Druck liegt die dafür nötige Temperatur bei etwa 10 Millionen °C.

Reaktionen (Auswahl):

In der Sonne findet u.a. die Proton-Proton-Reaktion statt, eine Folge von Reaktionen, bei der ebenfalls Helium-4 mit entsprechendem Energiegewinn entsteht. Zudem findet in der Sonne ein durch Kohlenstoff katalysierter Fusionszyklus statt, der Bethe-Weizsäcker-Zyklus, der etwa 1,6 % der Energieproduktion der Sonne ausmacht.

Die für die Fusion notwendige Temperatur hängt unter anderem vom Druck ab. So liegt die für die Wasserstofffusion nötige Temperatur auf der Erde bei etwa 100 Millionen °C, da hier kein solcher Druck wie der in der Sonne herrschende Gravitationsdruck erzeugt werden kann.

Wenn der Wasserstoff eines Sterns aufgebraucht und in Helium verwandelt ist, kommt die Energie aus der Fusion von Helium oder noch schwereren Atomkernen. Diese Fusionen liefern weniger Energie und benötigen höhere Fusionstemperaturen. Größere Sterne können mit ihrer Masse auch einen stärkeren Gravitationsdruck erzeugen, wodurch am Ende auch schwerere Elemente durch Fusion entstehen (bis zur Massenzahl 56 (Eisen)). Elemente mit noch größeren Massenzahlen können hingegen nicht mehr auf diese Weise entstehen, da solche Fusionen endotherm sind, d. h. weniger Energie liefern, als sie benötigen. Sie werden durch Neutronen- (s- und r-Prozess) und Protonenanlagerung (p-Prozess) gebildet (siehe Supernova, Kernkollaps).

 

 
   
Diese Webseite wurde kostenlos mit Homepage-Baukasten.de erstellt. Willst du auch eine eigene Webseite?
Gratis anmelden